If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-2.5=0
a = 7; b = 0; c = -2.5;
Δ = b2-4ac
Δ = 02-4·7·(-2.5)
Δ = 70
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{70}}{2*7}=\frac{0-\sqrt{70}}{14} =-\frac{\sqrt{}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{70}}{2*7}=\frac{0+\sqrt{70}}{14} =\frac{\sqrt{}}{14} $
| .08(1.18)^x=8 | | 0.66666666667m-0.5m+4=7 | | 0.7m-0.5m+4=7 | | 1/20y=5 | | 5^(x+3)=18^(-2x) | | 17=5+w | | -17=3y+7 | | 88=a-42 | | 8+k=36 | | 1/2h-3=3/2-h | | 23+z=64 | | 97=g-72 | | 3.5x=4.5 | | h/8=14 | | Y=x2+400x | | 13x+2=-8x+23 | | y=3(-4+15) | | y=3(-4+15 | | 4x-3(3x+15)=-25 | | (2x-13)/5-(x-3)/11=(x-9)/5+1 | | 4.9t^2-28.19t=13 | | 6k+7=4k+19;6 | | 3x+8=4x+-2 | | 4.9t^2-19t=13 | | 2x-4=3x-5() | | 26=-8y+2(y+4) | | 5/6x-4=1/2x-4 | | F(x)=x⁵-x³+3 | | 4×+5y=49 | | 3r^2-r+15=8 | | 16(m+5)^2=8 | | 4.9t^2-19t=-13 |